Hi everyone, I’ve been trying to understand how MiTM setups like a transparent proxy work.
Obviously, the use-case here is in a personal scope: I’d like to inspect the traffic of some of my machines. I am aware that Squid can be a transparent proxy, and some might use the Burp Suite to analyse network traffic.
Could someone explain the basic networking and the concept of certificates in this scenario? I feel like I don’t understand how certificates are used well enough.
For example: I realise that if someone inserts a root certificate in the certificate store of an OS, the machine trusts said CA, thus allowing encrypted traffic from the machine to be decrypted. However, say the machine was trying to access Amazon; won’t Amazon have its own certificate? I don’t know how I’m confused about such a simple matter. Would really appreciate your help!
Thanks, could you explain this a bit more? I didn’t understand what you mean by “sends a cert saying ‘I’m Amazon’”
A decrypting proxy acts like a local certificate authority and issues a certificate on behalf of the site to create one encrypted connection between the client and proxy while creating a second on with the original site on the other side.
The client will get an error (or depending on the site and browser may refuse to connect at all in the case of pinned and preloaded certificates) indicating that they’re connecting to a site with a certificate from an untrusted issued unless they’ve been configured to trust the CA held on the proxy.
The ‘break’ between the client side connection and the server side connection will be in plaintext and can be examined through internal tools or sent to external ones typically through ICAP.
I see. Which would mean that in cases where the application/OS can be made to blindly trust the “fake” CA (by inserting a root certificate into the certificate store, like in Android), the proxy can simply send the certificate and the client will believe that the certificate comes from Amazon. The certificate list can be refreshed by flushing the cache, yes?
Thanks for the explanation
There are some cases where this would not work by the way. It’s called certificate pinning and it’s basically when an application comes with the trusted certificate for a host built-in. Even if you were to override it with a root certificate in the certificate store, the app simply wouldn’t use it.
Shouldn’t flushing the cache mitigate this problem?
No, not at all. The request never hits the cache. The certificate is stored within the app and all internet communication is specifically pinned to said certificate. It doesn’t even ask your certificate store.
I see. Thanks, I’ll have to rethink the idea in that case.
Yeah, unfortunately it’s a huge barrier if you’re wanting to see why your devices are phoning home and the data being sent. It makes it extremely difficult if not impossible for most people to bypass.
I understand. What other methods would you suggest to be able to snoop on/decrypt the traffic from my device?
That’s the sum of it. Like others and I have noted some mobile apps (and Apple phones in particular have their entire OS configured to not trust any intercepted certs when attempting to speak to Apple home base) are prone to using certificate pinning and will reject the intercepted certs regardless of the trust store. It’s mostly beneficial for adjusting the browser.
If I might ask, what’s the purpose of this proxy? Functionally there are a lot simpler and more efficient ways to block traffic from a phone. If it’s more for traffic inspection I’ve seen a couple VPN based pcap apps for Android that could get a lot more detail while a DNS filter could both control and give visibility to traffic from the device without all the cert hassles.
Thanks, I didn’t realise that certificate pinning was this strict.
This effort is to check if my mobile has a baseband processor that might be communicating with the internet. I want to know if my device has a backdoor in hardware. The idea with a VPN has me intrigued, could you tell me more about that?
https://play.google.com/store/apps/details?id=app.greyshirts.sslcapture
Something like that should ship all traffic through a local VPN adapter and output a standard pcap file.
Another option if you have a bit more fancy networking available is to set up a security onion instance, then mirror a port on the network and just capture everything at an on-wire level. That would also cover things beyond just web traffic to catch other things like ssh or whatever other remote connectivity could be in play. Seeing the content of the connection is different than just seeing the connections existence though. The endpoint generally has the best visibility before data gets pushed into a a connection but unless you start getting into kernel level debugging it can still be hard to see into the behavior of internal applications.
https://play.google.com/store/apps/details?id=eu.faircode.netguard
This is also a local VPN way of seeing all the outgoing traffic along with allowing control of it as a local firewall.
Hi, thanks for the resources. However, I don’t think I’ll be able to decrypt the traffic from my mobile using this, yes? Using a VPN for this is a great idea though, this also happens to be how NoRoot firewalls work on Android
That’s literally it. It sends a cert for amazon.com, that your client trusts, because the CA cert used to sign it is in your trusted store.
I see, thanks for the explanation. Amazon sends the certificate to the proxy, and the proxy sends its own certificate, masquerading as amazon, to the user.
Thanks
I think it’s important to understand how a typical SSL certificate is generated. Basically, there are a handful of companies that we have all agreeded to trust. When you download Chrome it comes with a set of trusted root certificates, so does your OS, etc. So when Amazon wants to create an SSL for amazon.com, the only way they can do that is by contacting one of those handful of trusted companies and getting them to issue a certificate that’s says Amazon.com. When you go to the site, you see a trusted party generated the cert and your browser is happy.
When you create a new root certificate and install it on your computer, you become one of those companies. So now, you can intercept traffic, decrypt it, read it, reissue a certificate for amazon.com (the same way Amazon would have gotten one from the third parties), reencrypt it, and pass it along to the client. Because the client trusts you it’s still a valid certificate. But if you inspect the certificate on the client side the root signer will no longer be GoDaddy or whatever, it will be you.
Yes, I think that ‘masquerading’ is the key bit to grasp. The MITM Proxy isn’t just intercepting the traffic, it alters the traffic as it passes through.
Thanks, got it!